Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure

Author:

Mondal Priyajit1,Mahapatra T. R.2,Parveen Rujda3,Saha Bikash C.2

Affiliation:

1. Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu, India

2. Department of Mathematics, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India

3. Dream Institute of Technology, Kolkata, West Bengal-700104, India

Abstract

Numerical simulation of MHD double-diffusive mixed convection flow of different nanofluids in a trapezoidal enclosure is performed with an internal heat generation/absorption source inside the enclosure. The nondimensional momentum, heat and mass equations are solved numerically by using the finite difference method. The present study focused mainly on the increment of the rate of heat and mass transfer using internal heat generation or absorption sources inside a lid-driven trapezoidal cavity. Considering numerous governing parameters (Q = −5 to 5, Ha = 0 to 30, Ri = 0.01 to 100) the flow velosity, temperature and concentration profiles are calculated for various nanofluids. Graphs and numerical tables are utilized to examine how different physical entities affect the distribution of flow, temperature and concentration. It is noted that enhancing values of Ha reduces the mass and heat transfer rate. It is observed that heat generation/absorption significantly affect the heat transfer rate as internal heat generation source increases heat transmission rather than mass transfer. The involvement of heat generation/absorption source significantly affects the heat transfer rate. By considering Al2O3-water nanofluid, the solid volume percentage has an accelerating effect on the Nusselt and Sherwood numbers as compared to the other nanofluids in the study.

Publisher

American Scientific Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimisation of MHD flow within trapezoidal cavity containing hybrid nanofluid by artificial neural network;International Journal of Numerical Methods for Heat & Fluid Flow;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3