Bioinformatics Analysis of Dysregulated MicroRNA-Messenger RNA Networks in Small Cell Lung Cancer

Author:

Liu Xingsheng1,Zhang Yi1

Affiliation:

1. Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

Abstract

The present study aimed to identify a key module of differentially expressed miRNAs (DE-miRNAs) together with the corresponding differentially expressed mRNAs (DE-mRNAs) within small cell lung cancer (SCLC). Linear models were applied to ascertain the DE-miRNAs and DE-mRNAs in SCLC versus matched non-carcinoma samples obtained from the RNA expression datasets of GSE19945, GSE74190 and GSE6044. The common DE-miRNAs were identified using the Venn plot. Then, 3 databases were used to retrieve the DE-miRNAs target genes, and the intersection was taken for validating the shared target genes. Besides, Cytoscape was utilized for constructing the miRNAmRNA network for SCLC. Finally, a key module of five DE-miRNAs and four hub genes was determined based on the degree. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for exploring those hub genes in terms of their functions along with the involved signal transduction pathways. Altogether 106 shared DE-miRNAs were identified, which were used to predict 63 common target genes. In addition, a key module of five DE-miRNAs (hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-93-5p and hsa-miR- 106b-5p) and four hub genes (SOX4, DPYSL2, TGFBR2 and F3) were extracted from the miRNAmRNA network according to their degree. Finally, the hub genes were subjected to GO as well as KEGG analysis, which revealed that cell cycle G1/S phase transition, the extracellular matrix, and cellular senescence signaling pathways exerted vial parts during SCLC progression. A key module of five DE-miRNAs and four hub genes may be potentially used as clinical biomarkers to predict SCLC.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3