The Modulation of Regulatory T Cells via High Mobility Group Box-1/Receptor for Advanced Glycation End-Products/Adenosine Monophosphate-Activated Protein Kinase Axis in Chronic Kidney Diseases with Complication of Sepsis

Author:

Chen Yingying1,Chen Lan1,Zhang Yiyan1,Ling Yisheng1,Hu Xiaolong1,Guan Tianjun1

Affiliation:

1. Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361000, China

Abstract

Chronic kidney diseases (CKD) with complication of sepsis brings great clinical burden worldwide. Regulatory T cells (Tregs) can regulate key immune response during the progression of the diseases. The present study aims to investigate the role of HMGB1 in the regulation of Tregs and find out the potential mechanism. Jurkat cells were stimulated with 0.5 ng/ml TGF-β1 for 24 h to induce phenotypic alternation into Tregs, followed by stimulation with indoxyl sulfate (IS) and lipopolysac-charide (LPS) for 24 h. Then, Tregs were treated with recombinant human HMBG1 (rHMGB1) at different concentrations (10, 100 and 1000 ng/ml). Cell viability of Tregs was assayed by CCK-8. The gene expressions related to proliferation and autophagy were determined using RT-qPCR and western blotting. RAGE was inhibited by transfection with shRNA-RAGE in Tregs. The results showed that HMGB1 and RAGE were upregulated upon IS and LPS induction in Tregs. rHMGB1 significantly promoted the viability, proliferation and function of Tregs at a concentration-dependent way, which was partly reversed by RAGE knockdown. Besides, HMGB1-RAGE could regulate autophagy activity and AMPK-mTOR signaling pathway. In summary, our study concluded that the active autophagy mediated by enhanced HMGB1-RAGE axis through AMPK-mTOR signaling pathway was a potential mechanism to enhance Tregs viability and function in chronic kidney diseases with complication of sepsis.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3