Numerical Study of Interface Tracking for the Unsteady Flow of Two Immiscible Micropolar and Newtonian Fluids Through a Horizontal Channel with an Unstable Interface

Author:

Chandrawat Rajesh Kumar1,Joshi Varun1,Bég O. Anwar2

Affiliation:

1. Department of Mathematics, Lovely Professional University Jalandhar, 144411, India

2. Professor and Director Metaphysical Engineering Sciences Group (MPESG), Department of Mechanical/Aeronautical Engineering, School of Science, Engineering, Environment (SEE), Salford University, Manchester, M54WT, UK

Abstract

The dynamics of the interaction between immiscible fluids is relevant to numerous complex flows in nature and industry, including lubrication and coating processes, oil extraction, physicochemical separation techniques, etc. One of the most essential components of immiscible flow is the fluid interface, which must be consistently monitored. In this article, the unsteady flow of two immiscible fluids i.e., an Eringen micropolar and Newtonian liquid is considered in a horizontal channel. Despite the no-slip and hyper-stick shear stress condition at the channel edge, it is accepted that the liquid interface is dynamic, migrating from one position to the next and possibly get absolute change; as a result, The CS (continuum surface) model is integrated with the single moment equation based on the VOF (volume of fluid) approach to trace the interface. The immiscible fluids are considered to flow under three applied pressure gradients (constant, decaying, and periodic) and flow is analyzed under seamless shear stress over the entire interface. The modified cubic b-spline differential quadrature method (MCB-DQM) is used to solve the modeled coupled partial differential equations for the fluid interface evolution. The advection and tracking of the interface with time, wave number, and amplitude are illustrated through graphs. It is observed that the presence of micropolar parameters affects the interface with time. The novelty of the current study is that previous studies (which considered the smooth and unstable movement of the micropolar fluid, the steady stream of two immiscible fluids, and interface monitoring through different modes) are extended and generalized to consider the time-dependent flow of two immiscible fluids namely Eringen micropolar and Newtonian with a moving interface in a horizontal channel. For the decaying pressure gradient case, which requires more time to achieve the steady-state, the peak of the waves resembles those for the constant pressure gradient case. The interface becomes steady for a more extensive time when a constant pressure gradient is applied. The interface becomes stable quickly with time as the micropolar parameter is decreased for the constant pressure gradient case i.e., weaker micropolar fluids encourage faster stabilization of the interface. With periodic pressure gradient, the interface takes more time to stabilize, and the crest of the waves is significantly higher in amplitude compared to the constant and decaying pressure cases. The simulations demonstrate the excellent ability of MCB-DQM to analyze complex interfacial immiscible flows.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3