Affiliation:
1. Department of Mathematics, National Institute of Technology Meghalaya, Shillong 793003, India
2. Department of Mathematics & Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
Abstract
The purpose of the present analysis is to investigate the Soret and Dufour effects on steady and incompressible MHD nonlinear convective flow of tangent hyperbolic nanofluid over a permeable stretching surface with multiple slip conditions at the wall. Also, nonlinearly varying thermal
radiation, heat generation and chemical reaction along with a vanishing nanoparticle mass flux condition at the surface are taken into account. Further, Rosseland’s approximation for an optically thick and grey medium is used to approximate heat flux due to radiation. Suitable similarity
transformations are employed to transform governing PDEs into a system of ODEs. The resulting nonlinear equations are then solved numerically using the shooting technique based on the Runge-Kutta Cash-Karp method. The upshots of various physical parameters on velocity, temperature and concentration
distributions are illustrated and displayed through figures. The variations in coefficients of local skin friction, Nusselt and Sherwood numbers are explained and presented in tabular form. The obtained results are validated with the previously reported results for a particular case of the
present fluid flow problem, and an outstanding correlation is noticed from the comparison. Graphical results reveal that the nonlinear convection parameters for both temperature and concentration accelerate the primary flow. However, the Dufour number diminishes the fluid temperature near
the wall, and the Soret number uplifts the concentration profile within the boundary layer.
Publisher
American Scientific Publishers
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献