Preparation and Characterization of Insulin Nanoparticles Employing Chitosan and Poly(methylmethacrylate/methylmethacrylic acid) Copolymer

Author:

Li Ming-Guang,Lu Wan-Liang,Wang Jian-Cheng,Zhang Xuan,Zhang Hua,Wang Xue-Qing,Wu Cui-Shuan,Zhang Qiang

Abstract

As most of polypeptides are marginally stable, a mild formulation procedure would be beneficial for the activities of these drugs. The objective of the present study was to develop a novel pH-sensitive nanoparticle system that was suitable for entrapment of hydrophilic insulin but without affecting its conformation. Chitosan was incorporated as a positively charged material, and one of the three poly(methylmethacrylate/methylmethacrylic acid) copolymers, consisting of Eudragit L100-55, L100, and S100, was used as a negatively charged polymer for preparation of three insulin nanoparticles, respectively. Three nanoparticles obtained were spherical. The mean diameters were in the range from 200 nm to 250 nm, and the entrapment efficiencies, from 50% to 70%. The surface analysis indicated that insulin was evenly distributed in the nanoparticles. Polymer ratio of chitosan to Eudragit was the factor which influenced the nanoparticles significantly. Characterization results showed that the electrostatic interactions existed, thus providing a mild formulation procedure which did not affect the chemical integrity and the conformation of insulin. In vitro release studies revealed that all three types of the nanoparticles exhibited a pH-dependant characteristic. The modeling data indicated that the release kinetics of insulin was nonlinear, and during the release process, the nanoparticles showed a polynomial swelling. On overall estimation, the insulin chitosan-Eudragit L100-55 nanoparticles may be better for the oral delivery. This new pH-sensitive nanoparticle formulation using chitosan and Eudragit L100-55 polymer may provide a useful approach for entrapment of hydrophilic polypeptides without affecting their conformation.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3