Author:
Vani S.,Suresh G. R.,Balakumaran T.,Ashawise Cross T.
Abstract
Electroencephalogram (EEG) measures electrical activity of the brain and proffers valuable insight of the brain dynamics. Accurate and careful analysis of EEG signal plays a prominent role in the diagnosis of brain diseases like epilepsy, brain tumor. EEG is the most significant method
used for epilepsy monitoring, diagnosis and rehabilitation. A patient-specific seizure detection model has been developed using Haar wavelet and Artificial Neural Network. HAAR Wavelet decomposition of multi-channel EEG with five scales is made and three frequency bands of EEG selected for
the consequent process. The conventional Haar wavelet transform (HWT) is replaced by a modified Haar wavelet transform whereas the number of multiplications and additions are reduced. The Haar wavelet reduces computational complexity from the existing Haar wavelet structure which consumes
only 1–3 ms based on the decomposition level to detect epilepsy.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology Nuclear Medicine and imaging
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献