Design of System Level Architecture of Multi-Core with Array Mapping Based on Floating Processing Factor-Fast Fourier Transform for Health Informatics Application

Author:

Sivaprakasam T.1,Ramasamy M.2

Affiliation:

1. Sri Shakthi Institute of Engineering and Technology, Coimbatore 641103, India

2. K.S.R. College of Engineering, Thiruchengode 637215, India

Abstract

In FFT algorithms memory access patterns prevent multiple architectures from achieving high machine use, particularly when parallel processing is needed to achieve the desired efficiency rates. Beginning with the extremely powerful FFT heart, the on-chip memory hierarchy for the multicored FFT processor, is co-designed and linked on-chip. We have shown that the Floating Processing Factor (FPPE) proposed achieves greater operating rate and lower power for the application of health informatics. This test mechanism aids in omission of faulty cores and autonomous detection also makes elegant multi-core architecture degradation feasible. Experimental results illustrate that the anticipated design is scalable widely in terms of performance overhead and hardware overhead which makes it appropriate to many-cores with more than a thousand processing cores through Low Power and High Speed.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of A FFT Processor Based on The Variable Mixed-radix Algorithm;2023 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD);2023-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3