Growth of Zinc Oxide Nanorod and Nanoflower Structures by Facile Treatment of Zinc Thin Films in Boiling De-Ionized Water

Author:

Khedir Khedir R1,Saifaldeen Zubayda S1,Demirkan Taha1,Abdulrahman Rosure B2,Karabacak Tansel1

Affiliation:

1. Department of Physics and Astronomy, University of Arkansas at Little Rock (UALR), Little Rock, Arkansas, 72204, United States

2. Department of Physics, College of Science, University of Kirkuk, Kirkuk 36001, Iraq

Abstract

In this work, zinc oxide nanostructured films were developed by a facile treatment of the sputter deposited zinc thin films in boiling de-ionized water. Arrays of zinc oxide nanostructures with rod and flower-like shapes were obtained by changing the boiling water treatment time and manipulating the thickness of zinc film. Results of the scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction, ultraviolet-visible-near infrared spectroscopy, and photoluminescence techniques indicate that the obtained nanostructures are crystallized stoichiometric zinc oxide. Zinc oxide nanorods and nanoflowers start to form on the surface and progress across the zinc film’s thickness as a function of treatment time in boiling de-ionized water, which allow a controllable method of fabricating semiconducting/metal multilayer coatings. The obtained nanostructured films showed different optical properties depending on starting zinc film’s thickness and boiling water treatment time. In addition, photoluminescence analysis showed that the nanostructured films possess a major energy band gap of 3.28 eV along with two other secondary defects-related energy band gaps of 2.27 and 1.67 eV.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3