Antitumor Effect of Co-Loading Natural Active Compound of Okofuran (Usenamine) and Photosensitizer Nano-Liposomes

Author:

Song Xinyu1,Yang Lingyi2,Yang Yong3

Affiliation:

1. Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China

2. Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China

3. Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, China

Abstract

Objective: In this study, we developed a nano-liposome (LIP-RUA) to evaluate the in vitro anti-lung cancer activity. In this regard, nano-liposome co-loaded with photosensitizer (RB), upconverting nanoparticles (UCNPs), and natural active compound usenamine (ACU). Methods: LIP-RUA was obtained by encapsulating ACU/RB/UCNPs by thin film dispersion method. The physicochemical properties were investigated by using an instrument; the efficiency of liposomes producing reactive oxygen species (ROS) was detected by SOSG probe; the uptake of LIP-RUA by A549 lung cancer cells was observed by confocal microscopy. Results: The particle size of the prepared LIP-RUA was about 150 nm, the surface potential was about −12 mV, and the entrapment efficiency of RB and ACU reached 54.5% and 86.5%, respectively. Experimental tasks showed that LIP-RUA could significantly improve the growth inhibitory effect of the drug on lung cancer cells, and the median effective inhibitory concentration (IC50) under laser irradiation was 15.33 μmol/L. Conclusion: LIP-RUA provides a new idea for the combination of photodynamic chemotherapy for the treatment of lung cancer. The liposome platform is expected to enhance the in vivo penetration of photodynamic therapy and the combined effect of photodynamic chemotherapy.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3