A Novel Targeted Delivery of Valeric Acid Using Liposomal Nanoparticles in Treatment of Lung Cell Carcinoma

Author:

Chen Hongdou1,Wan Jinxiang2,Chen Douren3

Affiliation:

1. Department of Pharmacy, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu, China

2. Department of Functional Section, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, 223001, Jiangsu, China

3. Department of Pharmacy, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, 223001, Jiangsu, China

Abstract

With a high mortality rate, non-small cell lung cancer (NSCLC) is a major challenge for patients and clinicians. The high cost and side effects of chemo-drugs severely influence disease outcome. With advantages of action prolongation and solitary target for embedded drugs, liposomal nanoparticle-based modification was investigated in this study with valeric acid, aimed at exploring its impacts and value on NSCLC. The efficacy comparisons of chemo-drugs (cisplatin, paclitaxel and liposomal nanoparticle-modified valeric acid) were conducted utilizing human NSCLC cell lines, normal lung fibroblasts, pulmonary epithelial cell line, and mouse tumor models. Additionally, the underlying therapeutic mechanisms for this novel liposomal nanoparticle in NSCLC were also explored via analysis of protein changes in tumor tissues. Results showed that, in comparison with conventional chemotherapeutics (cisplatin and paclitaxel), novel liposomal nanoparticle-modified valeric acid effectively retarded the growth of human NSCLC cell lines to a greater extent, and even successfully restrained further progression of tumor tissues in vivo. Furthermore, this novel liposomal nanoparticle-modified valeric acid exhibited lower cytotoxicity towards normal lung cell lines. Additionally, the anti-cancer function of this novel liposomal nanoparticle-modified valeric acid was found to be related to STAT3/Cyclin D1 pathway. The current study confirmed that, compared with cisplatin and paclitaxel, this novel liposomal nanoparticle-modified valeric acid displayed significant therapeutic effect on NSCLC, with lower cytotoxicity to normal cells. It has therefore further promoted research progress and significance on NSCLC research in the clinical management of NSCLC.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3