Effect of microRNA-455-5p (miR-455-5p) on the Expression of the Cytokine Signaling-3 (SOCS3) Gene During Myocardial Infarction

Author:

Zhang Zaiyong1,Luo Wenzhi2,Han Yuanyuan3,Misrani Afzal4,Chen Hanwei3,Long Cheng4

Affiliation:

1. Department of Cardiology, Panyu Central Hospital, Guangzhou, 511400, Guangdong, PR China

2. Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, 511632, Guangdong, PR China

3. Department of Radiology, Panyu Central Hospital, Guangzhou, 511400, Guangdong, China

4. South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, Guangdong, PR China

Abstract

To explore the effect of microRNA-455-5p (miR-455-5p) and Cytokine Signaling-3 (SOCS3) expression, a model of the cell damage induced during myocardial infarction was established using H2O2. The cell counting Kit-8 (CCK-8) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays were used to detect the cell viability and the expression of miR-455-5p and SOCS3 in cells cultured with different concentrations of H2O2. After the selection of the optimum culture concentration, a dual-luciferase reporter gene assay was used to detect the binding between and miR-455-5p and its potential target SOCS3. SOCS3 siRNA was transfected into cardiomyocytes using chitosan nanoparticles as a gene carrier, which led to the knockdown of SOCS3 expression, and the cells were transfected with miR-455-5p mimics and inhibitors. The expression of cardiac protective proteins was detected by western blotting, cell viability was detected by CCK8, and cell apoptosis was detected by flow cytometry. The aim of this study was to investigate the effect of miR-455-5p and SOCS3 expression on the activity and apoptosis of damaged cardiomyocytes, and to identify any protective effect on cardiomyocytes. Finally, after the simultaneous overexpression of SOCS3 and miR-455-5p, and the expression of cardiac protective proteins, cell activity, and apoptosis rate were detected. The results showed that the expression of miR-455-5p decreased in a concentration-dependent manner and that the expression of SOCS3 increased in a concentration-dependent manner when the cells were cultured in different concentrations of H2O2. The knockdown of SOCS3 expression promoted an increase in cell activity, an increase in cardiac protective proteins, and a decrease in apoptosis. The upregulation of miR-455-5p significantly inhibited the expression of SOCS3, increased cell activity, inhibited apoptosis, and exerted protective effects in myocardial cells. The overexpression of SOCS3 reversed the inhibition of SOCS3 by miR-455-5p and reduced the protective effect of miR-455-5p on myocardial cells. Therefore, this study showed that the upregulation of miR-455-5p significantly inhibited the expression of SOCS3 and resulted in the increased protection of cells damaged by H2O2, which was used as a model of myocardial infarction. These results indicate the potential of miR-455-5p in myocardial protection, suggesting that miRNA may be a resource for myocardial therapy.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3