Affiliation:
1. Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
2. The School of Clinical Medical, Fujian Medical University, Fuzhou, 350000, China
Abstract
We transplanted RADA16-PRG self-assembled nanopeptide scaffolds (SAPNSs), bone mesenchymal stem cells (BMSCs), and a brain-derived neurotrophic factor (BDNF)-expressing adeno-associated virus (AAV) into rats subjected to acute spinal cord injury (SCI) to investigate the effects of these
transplantations on acute SCI repair and explore their mechanisms. Forty-eight SCI rats were randomly divided into four groups: BBR, BR, B, and NC groups. Seven and 28 days after SCI, evoked potentials (EPs) and BBB scores were assessed to evaluate the recovery of rats’ motor behavior
and sensory function after injury. HE and toluidine blue staining were performed to investigate the histological structure of the spinal cord tissue of rats from each group, and immunofluorescence staining was used to observe the red fluorescent protein (RFP) intensity of BMSCs and glial fibrillary
acidic protein (GFAP) and neurofilament (NF) in the damaged area in each group. RT–PCR was utilized to detect the expression levels of the BDNF, GFAP, and neuron-specific enolase (NSE) genes in the injured area in each group. The results showed that cotransplantation of RADA16-PRG-SAPNs,
BMSCs, and BDNF-AVV promoted the spinal cord’s motor and sensory function of SCI rats; increased levels of BMSCs, inhabited glial cells proliferation, and promoted neurons proliferations in the injured area; and increased NF, BDNF, and NSE levels and decreased its GFAP in the injured
area. Thus, cotransplantation of RADA16-PRG-SAPNS, BMSCs, and BDNF-AAV can prolong the survival time of BMSCs in rats, reduce the postoperative scarring caused by glial proliferation, and promote the migration and proliferation of neurons in the injured area, resulting in the promotion of
functional repair after acute SCI.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献