Mitochondria-Targeting-Based of Paclitaxel-Loaded Triphenylphosphine-Pluronic F127-Hyaluronic Acid Nanomicelles in Multi-Drug Resistant Hepatocellular Carcinoma

Author:

Yi Da1,Yazdani Yalda2

Affiliation:

1. School of Clinical Medicine, Fudan University, Shanghai, 200030, China

2. Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran

Abstract

Background: In this study a new novel nanomicelle (TPH) sco-loaded with triphenylphosphine (TPP)-Pluronic F127-hyaluronic acid (HA) and Paclitaxel (PTX) has been designed to treat multidrug resistant hepatocellular carcinoma (HCC). Methods: TPH was initially synthesized by ester bond formation with mitochondria-targeting TPP agent and TPH nanomicelles loaded with PTX (TPH/PTX) had outstanding physical characteristics in human multi drug-resistant HCC cell line Bel7402/5-FU. Cytotoxicity and hemocompatibility assessments, nanomicelle cellular absorption and mitochondrial targeting, and in vivo xenograft imaging was used to evaluate that the nonemicells delivered into target cell and components. Results: The results of fluorescence test showed that TPP could promote the fusion of nanomicells to human multi drugresistant HCC cell line Bel7402/5-FU, and targeted the mitochondria, and also improved the targeting and retention of drugs in liver tumors. The results of cell efficacy showed that TPH/PTX induced a strong apoptosis effect, which could significantly reduce the mitochondrial membrane Zeta potential, increase the level of intracellular ROS and the release of Caspase-3, significantly enhanced the pro-apoptotic protein (Bcl-2), decrease the expression level of anti-apoptotic protein (Bax). Conclusion: TPH/PTX has a promising mitochondrial targeting function, and can enhance the effect of drugs on promoting apoptosis of drug resistant HCC cells.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3