Affiliation:
1. School of Clinical Medicine, Fudan University, Shanghai, 200030, China
2. Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
Abstract
Background: In this study a new novel nanomicelle (TPH) sco-loaded with triphenylphosphine (TPP)-Pluronic F127-hyaluronic acid (HA) and Paclitaxel (PTX) has been designed to treat multidrug resistant hepatocellular carcinoma (HCC). Methods: TPH was initially synthesized
by ester bond formation with mitochondria-targeting TPP agent and TPH nanomicelles loaded with PTX (TPH/PTX) had outstanding physical characteristics in human multi drug-resistant HCC cell line Bel7402/5-FU. Cytotoxicity and hemocompatibility assessments, nanomicelle cellular absorption and
mitochondrial targeting, and in vivo xenograft imaging was used to evaluate that the nonemicells delivered into target cell and components. Results: The results of fluorescence test showed that TPP could promote the fusion of nanomicells to human multi drugresistant HCC cell
line Bel7402/5-FU, and targeted the mitochondria, and also improved the targeting and retention of drugs in liver tumors. The results of cell efficacy showed that TPH/PTX induced a strong apoptosis effect, which could significantly reduce the mitochondrial membrane Zeta potential, increase
the level of intracellular ROS and the release of Caspase-3, significantly enhanced the pro-apoptotic protein (Bcl-2), decrease the expression level of anti-apoptotic protein (Bax). Conclusion: TPH/PTX has a promising mitochondrial targeting function, and can enhance the effect of drugs
on promoting apoptosis of drug resistant HCC cells.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献