Author:
Ningthoujam R. S.,Sudarsan V.,Vinu A.,Srinivasu P.,Ariga K.,Kulshreshtha S. K.,Tyagi A. K.
Abstract
SnO2 nanoparticles dispersed in Eu3+ doped silica (SnO2-SiO2:Eu3+) were prepared at a low temperature (185 °C) in ethylene glycol medium. Transmission electron microscopy studies on as-prepared samples have established that
SnO2 nanoparticles having size of 4.6 nm are uniformly covered by the SiO2 matrix. Significant extent of exciton mediated energy transfer between SnO2 and Eu3+ ions in heat treated SnO2-SiO2:Eu3+ samples has been
attributed to the diffusion of Eu3+ ions from the SiO2 matrix to the near vicinity of SnO2 nanoparticles and its incorporation in the SnO2 matrix. On the other hand, very weak energy transfer exists for SnO2:Eu3+ nanoparticles
heated at different temperatures due to the phase segregation of Eu3+ ions from the matrix.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献