Author:
Peng Zifei,Jiang Wei,Liu Heng
Abstract
Tungsten-doped vanadium dioxide (VO2) nanopowders were prepared by thermolysis of (NH4)5[(VO)6(CO3)4(OH)9] · 10H2O at low temperature, with active white powdery tungstic acid used as a substitutional
dopant. The composition and microstructure of the powders were examined by X-ray diffraction, transmission electron microscope, and differential scanning calorimetry. The change in electrical resistance due to the S–M transition was measured from 0 to 150 °C by the four-probe method.
Hysteresis loops and differential scanning calorimetry analysis of the samples indicated that the phase-transition temperature of VO2 nanopowders was 67.15 °C. For tungstendoped VO2 nanopowders, the temperature was reduced to 26.46 °C. After sintering the nanopowders,
Tc rose from 26.46 °C to 34.85 °C with the sizes increasing to the bulk. A significant direct correlation between particle size and Tc was confirmed. The results indicated that white powdery tungstic acid is exceptionally effective as a dopant for reducing transition
temperature.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献