Natural Convection in a Newtonian Nanoliquid-Saturated Porous Enclosure with Local Thermal Non-Equilibrium Effect

Author:

Siddabasappa C.1,Aishwarya K.1,Babitha 2

Affiliation:

1. Department of Mathematics and Statistics, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560058, India

2. Department of Mathematics, Presidency University, Bangalore 560089, India

Abstract

Buoyancy-driven convective flow and heat transfer characteristics in a Newtonian nanoliquid-saturated porous square enclosure are analyzed numerically using a local thermal non-equilibrium model. An enclosure’s horizontal walls are considered free–free and adiabatic, and the vertical walls are free–free isothermal boundaries. The dimensionless governing equations are solved using a central finite difference scheme with second-degree accuracy, and the results are in satisfactory agreement with the earlier works. The impact of various parameters on streamlines and isotherms is analyzed and depicted graphically. The effect of Darcy number, thermal Rayleigh number, and the ratio of thermal conductivities slow down the liquid flow. The temperature distribution is maximum at sidewalls and diminishes the amount of heat transport. The opposite phenomenon is observed for the solute Rayleigh number and interphase transfer coefficient of liquid-particle phases. For large values of interphase heat transfer coefficients, liquid-solid and liquid-particle are said to be in the local thermal equilibrium phase. The amount of heat transfer increases with an increasing interphase heat transfer coefficient and the ratio of the phases’ thermal conductivities. Results of local thermal equilibrium situation can be obtained as the particular case of the study. The amount of heat transfer is maximum in the local thermal non-equilibrium situation, and enhanced by 0.09% compared with the local thermal equilibrium situation. Heat transport is 0.74% less in the sparsely packed porous medium compared with the low-porosity medium.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3