Thermal Performance on Radiative and Ohmic Dissipative Magneto-Nanoliquid Over Moving Flat Porous Plate Suspended by Single Wall Carbon Nanotubes and Multi Wall Carbon Nanotubes

Author:

Kumar T. Kiran1,Shamshuddin MD.1

Affiliation:

1. Department of Mathematics, School of Sciences, SR University, Warangal-506371, Telangana, India

Abstract

This investigation examines heat transport in the flow of magnetized Blasius flow suspended by carbon nanotubes (CNTs) on an accelerated by moving flat porous plate that contains water and ethylene glycol as base fluids. The transfer of heat has been contemplated in the company of suspended CNTs above a plane plate. The flow simulations are carried by utilizing the impact of magnetic field and uniform porous medium. The transport of thermal is controlled by the significant influence of thermal radiation, heat source, heat and Joule dissipation. Utilizing scaling analysis flow governing problem is converted into a set of higher order nonlinear ordinary differential equations which afterwards are tackled numerically by employing Runge-Kutta Fehlberg 45 method with shooting quadrature. Quantities of flow physical significance are portrayed through graphically. Verification of attained numerical results with available literature under certain limitations are presented and found excellent agreement. With elevation in convective term flow profiles of SWCNTs and MWCNTs are reduced. A reduction of flow characteristic dimensions is observed with increasing magnetic field and porosity terms. Finally, SWCNTs and MWCNTs are positively influenced by Joule dissipation and negatively by thermal radiation.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3