Defect-Tolerant Architectures for Nanoelectronic Crossbar Memories

Author:

Strukov Dmitri B.,Likharev Konstantin K.

Abstract

We have calculated the maximum useful bit density that may be achieved by the synergy of bad bit exclusion and advanced (BCH) error correcting codes in prospective crossbar nanoelectronic memories, as a function of defective memory cell fraction. While our calculations are based on a particular ("CMOL") memory topology, with naturally segmented nanowires and an area-distributed nano/CMOS interface, for realistic parameters our results are also applicable to "global" crossbar memories with peripheral interfaces. The results indicate that the crossbar memories with a nano/CMOS pitch ratio close to 1/3 (which is typical for the current, initial stage of the nanoelectronics development) may overcome purely semiconductor memories in useful bit density if the fraction of nanodevice defects (stuck-on-faults) is below ∼15%, even under rather tough, 30 ns upper bound on the total access time. Moreover, as the technology matures, and the pitch ratio approaches an order of magnitude, the crossbar memories may be far superior to the densest semiconductor memories by providing, e.g., a 1 Tbit/cm2 density even for a plausible defect fraction of 2%. These highly encouraging results are much better than those reported in literature earlier, including our own early work, mostly due to more advanced error correcting codes.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in optical recording techniques for non-invasive monitoring of electrophysiological signals;Journal of Physics D: Applied Physics;2024-09-13

2. Amorphous ITZO-Based Selector Device for Memristor Crossbar Array;Micromachines;2023-02-22

3. Resistive Switching Crossbar Arrays Based on Layered Materials;Advanced Materials;2023-01-13

4. Resistive switching in metal oxides for various applications;Nanomaterials for Sensing and Optoelectronic Applications;2022

5. Nanoscale Memristor;Encyclopedia of Smart Materials;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3