MiR-141 Modulates Bone Marrow Mesenchymal Stem Cells (BMSCs) Osteogenic/Adipogenic Differentiation Under Oxidative Stress

Author:

You Chuanfei1,Liu Jun2,Qiu Ruoyu3,Xu Leijun1,Dai Furen1,Ni Qianzhao1,Qiu Weisheng1

Affiliation:

1. Department of Orthopedics, Peoples Hospital of Siyang County, Suqian, Jiangsu, 223700, China

2. Department of Orthopaedics, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China

3. Department of Rheumatoid Immunity, Nanjing Gulou Hospital Group Suqian People’s Hospital, Suqian, Jiangsu, 223800, China

Abstract

BMSCs Osteogenic differentiation is beneficial to the construction of bone tissue engineering. Oxidative stress can affect BMSCs differentiation. MiR-141 regulates BMSCs proliferation. However, MiR-141’s role in BMSCs osteogenic/adipogenic differentiation under oxidative stress is unclear. Mice BMSCs were assigned into control group; oxidative stress group; and si-MiR-141 group followed by detecting miR-141 level. After 14 days of osteogenesis or adipogenesis induction, RUNX2, OPN and FABP4 mRNA level was analyzed together with analysis of ROS and SOD content, ALP activity and TGFβ/smad signaling protein level by Western blot. Under oxidative stress, MiR-141 was significantly upregulated and RUNX2 and OPN level was decreased, along with increased ROS content and FABP4 level, reduced SOD and ALP activity and expression of TGFβ1 and smad2 (P < 0.05). Transfection of MiR-141 siRNA into BMSCs under oxidative stress down-regulated MiR-141, significantly upregulated RUNX2 and OPN, reduced ROS, elevated SOD activity, downregulated FABP4, and increased ALP activity and TGFβ1 and smad2 expression (P < 0.05). In conclusion, MiR-141 expression is increased in BMSCs under oxidative stress. Down-regulating MiR-141 improves the redox imbalance through TGFβ/smad signaling pathway, promotes osteogenic differentiation of BMSCs and inhibits differentiation to adipocytes.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3