Effect of Type 1 Collagen Bioactive Material Scaffold on the Recovery of Sports-Caused Cartilage Injury

Author:

Jiang Xiaocheng1,Ren Yuxiang1,Zhang Xintao1,You Tian1,Ren Shiyou1,Xie Xiaoxiao1,Zhou Ri1,Li Canfeng1,Zhang Wentao1

Affiliation:

1. Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China

Abstract

This study was aim to investigate the effect of type 1 collagen (Col I) bioactive scaffold on regeneration and repair of motor cartilage injury. Fifteen New Zealand rabbits were randomly divided into sham operation group (Sham group, only cartilage was exposed, no defect was made), model group Focal cortical dysplasias (FCD) group, cartilage defect model], and treatment group (Col I group, cartilage defect + Col I bioactive scaffold treatment). The cartilage tissue of each group was detected 16 weeks after the operation. Immunohistochemistry and Western Blot were adopted to detect the expression of cartilage related proteins in each group. The results showed that Col I bioactive scaffold could repair the gross morphology of cartilage defect, promote the regeneration and repair of chondrocytes in defect area, and reduce the mast cells in defect area. Western Blot detection of the expression of signal pathway marker proteins showed that expression of Wnt protein, β-catenin protein, and phosphofructokinase-1 (PFK-1) protein in the FCD group were significantly reduced than Sham group (P < 0.05), while the expression of phosphoenolpyruvate carboxykinase 1 (PEPCK1) protein was significantly increased (P < 0.05). Expression of Wnt protein, β-catenin protein, and PFK-1 protein in Col I group increased significantly versus FCD group (P < 0.05), while the expression of PEPCK1 protein significantly decreased (P < 0.05). In conclusion, Col I bioactive scaffolds could regenerate and repair cartilage defects, and the mechanism may be related to Wnt signaling pathway and glycolysis/gluconeogenesis pathway.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3