miR-124-Antagonist-Loaded Liposomal Nanoparticles Negatively Regulate the Toll-Like Receptor (TLR)-Signaling Pathway in Alveolar Epithelial Cells in Pulmonary Tuberculosis

Author:

Yu Rong1,Zhang Cai2

Affiliation:

1. Department of Tuberculosis, The First Hospital of Changsha, Changsha 410000, Hunan, China

2. Department of Pediatrics, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha 410000, Hunan, China

Abstract

miR-124 is intensively expressed in the alveolar epithelial cells of pulmonary tuberculosis. This study focused on exploring the negative regulation of miR-124-antagonist-loaded liposomal nanoparticles on the Toll-like receptor (TLR)-signal transduction pathway in the alveolar epithelial cells from pulmonary tuberculosis, aiming to provide theoretical evidence for the treatment of pulmonary tuberculosis. The purchased alveolar epithelial cells were grouped into Blank group, Empty-vector group, Bacillus Calmette-Guerin (BCG) group, Nanoparticle+MiR-124 Antagonist group, MiR-124 Antagonist group, and MiR-124 Agonist group. The liposomal nanoparticles were identified. The following aspects were investigated: mRNA level of miR-124, mRNA and protein levels of Myeloid differentiation factor 88 (MyD 88), Toll-like receptor the 6 (TLR 6) and their downstream molecules Nuclear Factor-κB (NF-κB) and Tumor necrosis factor TNF receptor-associated factor 6 (TRAF 6) secretion level of cytokines (NF-κB, IL-8, IL-1α, TNF-α and IL-6), as well as the regulatory link between miR-124-antagonists with TLR6 and MyD88. The liposomal nanoparticles were uniform in size, with an average particle size of (35.25±10.58) nm and an average Zeta potential of (−48.55±10.27) mV. The miR-124 level was the strongest in the MiR-124 Agonist group, while being the lowest in the Blank group. The miR-124 level was relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+MiR-124 Antagonist group, which was higher than the Blank group. The miR-124 level in the MiR-124 Antagonist group was higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05). The mRNA and protein levels of MyD88, TLR6, NF-κB and TRAF6 were the highest in the MiR-124 Agonist group, while being the lowest in the Blank group. The transcription and translation levels of TRAF6, TLR6, NF-κB and MyD88 were relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+ MiR-124 Antagonist group, which were higher than in the Blank group. The transcription and translation levels of TRAF6, TLR6, NF-κB and MyD88 were in the MiR-124 Antagonist group were higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05). The secretion levels of inflammatory factors (NF-κB, IL-8, IL-1α, TNF-α and IL-6) were the highest in the MiR-124 Agonist group, while being the lowest in the Blank group. The levels of these inflammatory factors were relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+MiR-124 Antagonist group, which were elevated compared to that in the Blank group. The secretion quantities of these inflammatory factors in the MiR-124 Antagonist group were higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05).Dual luciferase experiments indicated that miR-124-antagonists may retard TLR6 and MyD88 to affect the immune response of pulmonary alveolar epithelial cells in pulmonary tuberculosis. The fluorescence intensity of mutant plasmid was significantly stronger than that of wild-type plasmid (P < 0.05). In the alveolar epithelial cells from pulmonary tuberculosis, the miR-124-antagonistloaded liposomal nanoparticles can significantly reduce the expression of TLR6 and MyD88, and their downstream molecules (NF-κB and TRAF6), leading to the reduced secretion of the inflammatory factors. As a result, the inflammatory response of lung tissue was alleviated, while the immune function was restored. This regulation was achieved by the miR-124-antagonist-loaded liposomal nanoparticles via negatively regulating the TLR6/MyD88 pathways.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3