A Resveratrol-Loaded Poly(2-hydroxyethyl methacrylate)-Chitosan Based Nanotherapeutic: Characterization and In Vitro Cytotoxicity Against Prostate Cancer

Author:

Eroglu Erdal1

Affiliation:

1. Department of Bioengineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, 45140, Turkey

Abstract

The delivery of therapeutic molecules such as drugs, nucleic acids, or other active molecules into the target tissue and cells is limited because of biological and cellular barriers. Recently, many efforts are being made to bypass these barriers using nanosized drug delivery vehicles. For the targeted transfer of anticancer agents into the cancer tissue with higher efficiency and lower cellular toxicity, synthesis of nano-scale smart materials hold great promise due to the enhanced permeability and retention capability. Encapsulation of natural anticancer compounds such as resveratrol displaying low water-solubility and poor chemical stability into nanomaterials are intensely being studied to achieve the enhanced anticancer activity. The aim of this study is to investigate the drug delivery efficiency of the poly(2-hydroxyethyl methacrylate) (pHEMA)-chitosan nanoparticles (PCNPs) against PC-3 human prostate cancer cells In Vitro. To achieve this aim, resveratrol (RES), one of the widely known natural anticancer agent, is encapsulated into pHEMA core and pHEMARES nanospheres were coated with a cationic polymer, chitosan. Then, developed PCNPs-RES complexes were characterized using fourier transformed infrared (FTIR) spectroscopy, ultraviolet (UV) visible spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta potential and atomic force microscopy (AFM) analyses. The characterization studies revealed the synthesis of PCNPs nanoparticles and the entrapment of RES into PCNPs. Also, the cytotoxicity and drug delivery efficiency of PCNPs-RES complexes were tested in human prostate cancer cells, PC-3, In Vitro. As a consequence, PCNPs was shown to be a promising candidate as a new generation nanotherapeutic against prostate cancer In Vitro.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3