A Comparative Study of Pathological Nanomineral Aggregates with Distinct Morphology in Human Aortic Atherosclerotic Plaques

Author:

Li Yuan1,Wang Changqiu1,Lu Anhuai1,Li Kang2,Cheng Xiao1,Yang Chongqing3,Li Yanzhang1,Li Yan1,Ding Hongrui1

Affiliation:

1. The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China

2. Department of Cardiology, Beijing Hospital, Beijing 100730, China

3. Department of Pathology, Beijing Hospital, Beijing 100730, China

Abstract

Calcification exists in atherosclerotic plaques in the form of nanomineral aggregates and is closely related to the development of atherosclerosis. Spheroidal and massive calcification are two major types of calcification found in atherosclerotic tissue. However, the exact difference between these two types of calcification is still not clear. Samples composed entirely of spheroidal calcifications and massive calcifications were isolated from aortic atherosclerotic plaques and tested using both bulk and microscopic analysis techniques. Scanning electron microscopy and transmission electron microscopy showed that spheroidal calcifications had a core–shell structure. Massive calcifications were composed of randomly arranged nanocrystals. Synchrotron radiation X-ray diffraction, Raman spectroscopy and selected area electron diffraction showed amorphous calcium phosphate, whitlockite and carbonate hydroxyapatite all existing in spheroidal calcification, while massive calcification only consisted of carbonate hydroxyapatite. We conclude that amorphous calcium phosphate may act as a precursor phase of spheroidal calcifications that eventually transforms into a crystalline phase, while whitlockite in lesions could aggravate the progression of atherosclerosis.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3