Combustion Synthesis of Nanostructured ZrC: Formation Process and Influencing Factors

Author:

Zhao Xian-Rui1,Zuo Dun-Wen2,Chen Yong3,Li Qin-Tao3,Liu Gui-Xiang3,Zhang Qiang-Yong1,Zhu Zheng-Yu1,Xu Feng2

Affiliation:

1. School of Naval Architecture & Ocean Engineering, Jiangsu Maritime Institute, Nanjing 211170, China

2. Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

3. School of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing 210023, China

Abstract

ZrC was produced by the combustion synthesis technology using Cu, Zr, and graphite as the starting element powders. The synthesis mechanism of ZrC was investigated by the combustion wave quenching experiment. Furthermore, the effects of sizes of C and Cu on the combustion synthesis behavior and products were also explored. Results revealed that ZrC was fabricated through the displacement reaction between C and Cu–Zr liquid. The Cu size hardly affected the combustion temperature and resultant products, indicating that the preparation cost of ZrC could be decreased by employing coarse Cu powders. With increasing C size, the burning temperature and ceramic particle size reduced. Graphite with size of 2.6 μm was used as the C source, and only ZrC nanoparticles and Cu were obtained. The products could be employed to prepare nano-sized ZrC/Cu composites without the elimination of by-products.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3