Electrospun Zn Doped CuFe2O4 Nanofibers with Enhanced Photo Fenton-Like Catalytic Activity

Author:

Cui Yongping1,Shang Yaru1,Cheng Xiaohu1,Shi Ruixia1,Yang Ping1

Affiliation:

1. School of Materials Science and Engineering, University of Jinan, 250022, Jinan, P. R. China

Abstract

One dimensional Zn doped CuFe2O4 spinel ferrite nanofibers were successfully prepared via a facile electrospinning method followed by two different calcination routes. The results showed that the as-prepared nanofibers through two-step calcination exhibited more uniform size distribution in diameter compared with those calcined by one-step method. X-ray diffraction (XRD) results indicated that with the increase of Zn content the position of diffraction peaks of Zn doped CuFe2O4 slightly shift towards lower 2θ angle because the ionic sizes of the Zn2+ (0.74 Å) is larger than that of Cu2+ (0.69 Å). Fourier transform infrared spectroscopy (FTIR) results showed that with increasing Zn content the position of vibrational band (590 cm−1) shifted towards the smaller wavenumber. Generally, photo-generated carriers increased with the increasing of Zn content. The photo Fenton-like catalytic results revealed that the doping of Zn facilitated the enhancement of degradation efficiency of catalysts. Additionally, 10 at.% Zn doped CuFe2O4 exhibited the best photo Fenton-like catalytic activity and the degradation efficiency of Rhodamine B (RhB) could reach 100% in 40 min. Finally, the enhancement of photo Fenton-like catalytic mechanism of the Zn doped CuFe2O4 nanofibers was mainly attributed to actived spinel structure lattice by Zn doping, which allows more Cu2+ and Fe3+ ions are involved in the photo Fenton-like catalytic reaction.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3