Gray Level Co-Occurrence Matrix (GLCM) Parameters Analysis for Pyoderma Image Variants

Author:

Gupta Chaahat1,Gondhi Naveen Kumar1,Lehana Parveen Kumar2

Affiliation:

1. School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India

2. Department of Electronics, University of Jammu, Jammu, J&K, 180006, India

Abstract

Analysis of different visual textures present in the given images is one of the important perspectives of human vision for objects segregation and identification. Texture-based features are widely used in medical diagnosis for informal prediction of dermatological diseases. Dermatological diseases are the most universal diseases affecting all the living beings worldwide. Recent advancements in image processing have considerably improved the classification, identification, and treatment of various dermatological diseases. Present paper reports the results of Gray Level Co-occurrence Matrix (GLCM) based texture analysis of skin diseases for parametric variations. The investigations were carried out using three Pyoderma variants (Boil, Carbuncle, and Impetigo Contagiosa) using GLCM. GLCM parameters (Energy, Correlation, Contrast, and Homogeneity) were extracted for each colour component of the images taken for the investigation. Contrast, correlation, energy, and homogeneity represent the coarseness, linear dependency, textural uniformity, and pixel distribution of the texture, respectively. The analysis of the GLCM parameters and their histograms showed that the said textural features are disease dependent. The approach may be used for the identification of dermatological diseases with satisfactory accuracy by employing a suitable machine learning algorithm.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3