Dynamic Measurement and Prediction of Sulfur Hexafluoride Gas Weight Based on Non-Ideal Gas State Equation and Improved Random Forest

Author:

Zhang Lijun1,Liu Kecheng1,Han Hesong1,Shi Rongxue1

Affiliation:

1. State Grid Hebei Electric Power Co., Ltd. Electric Power Science Research Institute, Shijiazhuang, 050021, China

Abstract

Real-time knowledge of sulfur hexafluoride (SF6) gas weight can effectively manage and maintain the power equipment using SF6. Firstly, the gas pressure and temperature sensors are utilized to measure SF6 gas pressure and temperature dynamically. Secondly, the measured gas pressure and temperature values are converted to the SF6 gas weight using equations for calculating non-ideal gas states. Finally, the dynamic prediction model of the SF6 gas weight is developed by combining the improved chimp optimization algorithm and random forest algorithm. The dynamic prediction model is trained using measured pressure and temperature data as inputs and the calculated SF6 gas weight as outputs. The trained prediction model enables the dynamic prediction of SF6 gas weight. The experimental results show that the mean absolute error, root mean square error, and mean absolute percentage error of the proposed prediction model reaches 51.54 kg, 103.59 kg, and 11.62%.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3