Impact of Coexistence of Microplastics and Biochar on the Abundance and Structure of Soil Fungal Communities

Author:

Wang Xiying1,Zhao Hui1,Li Deyan2,Tan Zhiyong1,Hou Jianwei1

Affiliation:

1. Tongren University, Tongren, 554300, China

2. Anshun University, Anshun, 561000, China

Abstract

In this pursuit, we analyzed the effects of microplastics (PP, PE, PVC) and microplastics and biochar coexistence (PPR, PER, PVCR) on soil fungal community structure and diversity, and functional prediction analysis. Results showed that microplastics and their coexistence with biochar had a significant impact on the soil physicochemical, with PVCR treatment exhibiting the highest soil pH, organic carbon, phosphorus, potassium, and ammonium nitrogen content. Microplastics and their coexistence with biochar significantly increased fungal abundance, with PPR treatment having the highest fungal abundance. Microplastics and their coexistence with biochar (except for PP) significantly reduced the soil fungal diversity indices. The dominant fungal communities were Ascomycota, Basidiomycota, and Zygomycota, while at the genus level, Mortierella, Aspergillus, and Fusarium were found to be dominant taxa. Microplastics and their coexistence with biochar promoted the Basidiomycota and Mortierella and inhibited the Ascomycota and Fusarium. Effect of microplastics and biochar coexistence was significantly higher than that of microplastics alone. Soil pH, ammonium nitrogen, organic carbon, nitrate nitrogen, and potassium were main factors affecting the soil fungal community structure changes. FUNGuild functional prediction results showed that microplastics and their coexistence with biochar had a significant influence on the functional group. The relative abundance of pathogenic-saprotrophic-symbiotic nutritional fungi was the highest in the PPR while the PVCR showed the highest relative abundance of saprotrophic nutritional fungi. In summary, the coexistence of microplastics and biochar had a significant affect the soil fungal community, while its impact exhibited variations depending on the type of microplastics.

Publisher

American Scientific Publishers

Subject

Renewable Energy, Sustainability and the Environment,Biomaterials,Bioengineering

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3