Intra-Seminiferous Tubular Injection of Vascular Endothelial Growth Factor C Sustained-Release Ultrafine Particles: A Novel Method for Improving the Regeneration of Spermatogenesis After Chemotherapy

Author:

Zhao Liangyu,Yao Chencheng,Zhu Zijue,Liu Nachuan,Zhai Jing,Wang Yizhou,Yang Chao,Tian Ruhui,Li Peng,Chen Huixing,Wan Zhong,Zhi Erlei,Huang Yuhua,Zhou Zhi,Li Zheng

Abstract

Busulfan and other chemotherapeutic drugs used in the treatment of cancer may result in temporary or even permanent damage to spermatogenesis. During spermatogenesis, the rapidly dividing spermatogonia are highly susceptible to chemotherapy. Consequently, there is significant interest in developing an approach that could provide stimulation and regenerate spermatogenesis after chemotherapy. In a previous study, we suggested the potential application for vascular endothelial growth factor C (VEGFC) because of its key role in stimulating the proliferation of spermatogonia. However, methods to facilitate the recovery of spermatogenesis in such patients using VEGFC, or other regulatory factors, are sorely lacking because of the rapid degradation of these proteins and restrictions created by the blood-testis-barrier. To this end, we loaded VEGFC into polyanion dextran sulfate incorporated in a polycation chitosan shell to produce VEGFC sustained-release ultrafine particles (UFPs, CS-DS-VEGFC). We tested such particles in an azoospermic mouse model, created using busulfan. For each mouse, CS-DS-VEGFC was injected into the seminiferous tubules of one testis, while unloaded UFPs (CS-DS), or the VEGFC protein alone, was injected into the opposite testis as a control. All mice were sacrificed and evaluated 5 weeks later. Spermatogenesis in the tubules that were injected with CS-DS-VEGFC was clearly better than those injected with controls, and contained more spermatogonia and spermatocytes, along with Ki67 and PCNA positive-cells per tubule. In addition, the phosphorylation levels of AKT and MAPK in these tubules were also higher than in controls, indicating that CS-DS-VEGFC could induce the sustained activation of these pathways. In conclusion, CS-DS-VEGFC, combined with the efferent tubule injection technique, is a feasible approach with which to improve the regeneration of spermatogenesis in busulfan-induced azoospermic mice.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3