Author:
Wang Xu,Liang Gao-Feng,Hao Xue-Qin,Feng Shu-Ying,Dai Lu,An Jun-Ling,Li Jing-Hua,Shi Hao,Feng Wen-Po,Zhang Xin
Abstract
As a widely used first-line chemotherapy drug for tumor, Doxorubicin (DOX) can induce various side effects on normal tissues because of its non-specific distribution in the body. Emerging evidence has shown that platelets have the capability to recognize and interact with tumor cells.
Inspired by this, the platelet-based drug delivery system was constructed by loading of DOX in platelet cytoplasm and modification of transferrin on the surface of platelet (Tf-P-DOX). The encapsulation efficiency of DOX in platelet was the highest at the DOX concentration of 0.05 mM, and
reached to 64.9%. Fluorescence microscopy showed that the Tf-P-DOX facilitated cell uptakes and enhanced intracellular drug accumulation in B16F10 cells. Compared with free DOX, Tf-P-DOX exhibited an enhanced effect on cell apoptosis at the same concentration of DOX. In vivo imaging
system showed that the near-infrared fluorescence of B16F10 tumor-bearing mice was mainly accumulated in the tumor site, which caused the inhibition of tumor growth in mice. The morphological changes of tumor tissue in Tf-P-DOX group was significant in comparison with those of the control
group, including the small nucleus, the insufficiency of cancerous nest, and the infiltration of inflammatory cells, while Tf-P-DOX did not show significant adverse effects on normal tissues. Compared with the control group, the levels of caspase 9 and caspase 3 protein expressions were increased
significantly in Tf-P-DOX group. Our studies suggest platelets can be repurposed as promising carriers for efficient targeting and treatment of solid tumors.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献