Bioinspired Drug Delivery Carrier for Enhanced Tumor-Targeting in Melanoma Mice Model

Author:

Wang Xu,Liang Gao-Feng,Hao Xue-Qin,Feng Shu-Ying,Dai Lu,An Jun-Ling,Li Jing-Hua,Shi Hao,Feng Wen-Po,Zhang Xin

Abstract

As a widely used first-line chemotherapy drug for tumor, Doxorubicin (DOX) can induce various side effects on normal tissues because of its non-specific distribution in the body. Emerging evidence has shown that platelets have the capability to recognize and interact with tumor cells. Inspired by this, the platelet-based drug delivery system was constructed by loading of DOX in platelet cytoplasm and modification of transferrin on the surface of platelet (Tf-P-DOX). The encapsulation efficiency of DOX in platelet was the highest at the DOX concentration of 0.05 mM, and reached to 64.9%. Fluorescence microscopy showed that the Tf-P-DOX facilitated cell uptakes and enhanced intracellular drug accumulation in B16F10 cells. Compared with free DOX, Tf-P-DOX exhibited an enhanced effect on cell apoptosis at the same concentration of DOX. In vivo imaging system showed that the near-infrared fluorescence of B16F10 tumor-bearing mice was mainly accumulated in the tumor site, which caused the inhibition of tumor growth in mice. The morphological changes of tumor tissue in Tf-P-DOX group was significant in comparison with those of the control group, including the small nucleus, the insufficiency of cancerous nest, and the infiltration of inflammatory cells, while Tf-P-DOX did not show significant adverse effects on normal tissues. Compared with the control group, the levels of caspase 9 and caspase 3 protein expressions were increased significantly in Tf-P-DOX group. Our studies suggest platelets can be repurposed as promising carriers for efficient targeting and treatment of solid tumors.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3