Affiliation:
1. Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004,
China
2. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
Abstract
Nitrogen-sulfur co-doped interconnected honeycomb sheet-like biomass carbon (N, S-BC) from low-cost agriculture waste-bagasse, was prepared by a simple and effective strategy of one step heat treatment with thiourea as doping agent. The mesoporous structure of N, S-BC shows an average
pore diameter of 6–25 nm, a sheet thickness of 5–7 nm, and a relatively large BET surface area of 1576.7 m2 g−1. The N, S-BC anode material exhibits better electrochemical performance than the un-doped BC and the N, S single-doped BC (N-BC and S-BC).
The N, S-co-doping makes the first discharge specific capacity of BC increase 105.9%, the first coulomb efficiency increase 22.8%, and the reversible capacity increase 187.2% after 50 cycles. After 200 cycles, A relatively high reversible capacity of 572.8 mAh g−1 even can
be observed at a high current density of 2 A g−1, which is 3.7 times that of BC and almost twice that of N-BC and S-BC. When using as LEDs lighting power supply, the brightness duration of N, S-BC cell shows longer than that of BC cell. The dynamic storage mechanism study
results show that both the diffusion coefficient of lithium ions and capacitance contribution rate of N, S-BC are larger than those of BC. These enhanced electrochemical properties of N, S-BC are attributed to their high specific surface area, abundant uniform mesoporous structure of the honeycomb
layer and defects, and the synergistic effect of diatomic doping. The one-step method of N, S co-doping technology for sheet-like porous biomass carbon could be used to synthesize high-performance lithium-ion battery electrode materials with cheap and readily available agricultural waste is
used as precursors.
Publisher
American Scientific Publishers
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献