A Quasi 2-D Electrostatic Potential and Threshold Voltage Model for Junctionless Triple Material Cylindrical Surrounding Gate Si Nanowire Transistor

Author:

Manikandan S.1,Dhanaselvam P. Suveetha2,Pandian M. Karthigai3

Affiliation:

1. Department of Electronics & Communication Engineering, Pandian Saraswathi Yadav Engineering College, Sivagangai 630561, India

2. Department of Electronics & Communication Engineering, Velammal College of Engineering and Technology, Madurai 625009, India

3. Department of Instrumentation & Control Engineering, Sri Krishna College of Technology, Coimbatore 641042, India

Abstract

A mathematical model used for determining the threshold voltage characteristics and electrostatic potential of a Junctionless Triple Material Cylindrical Surrounding Gate Silicon Nanowire Transistor (JLTMCSGSiNWT) is proposed in this research work and is obtained by resolving the poison equation. Three materials with dissimilar metal functions are used in the construction of the device gate structure. Device parameters used to determine the electrical characteristics are also included in the model. Behavior of the device is investigated through its vertical electrical field distribution along the device channel. Higher drain bias conditions leading to DIBL are reduced in the proposed structure by minimal variation of voltages owing to three different gate materials that maintain a steady field distribution along the channel. This model explicitly shows the impact of various criteria like drain bias voltage, gate bias voltage, thickness of the silicon layer, thickness of the oxide layer, and length of the channel on electrostatic potential and the deterioration of threshold voltage. The proposed analytical model is validated with TCAD simulations and it could be further extended to study the advanced electrical characteristics of the JL Triple Material CSG Silicon Nanowire Transistor.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3