Preparing High Strength and Elongation of Biodegradable Zinc–Magnesium Alloys with Superior Antibacterial Properties and Biocompatibility

Author:

Zhang Bi1,Chen Rongchun2,Zhang Bin1

Affiliation:

1. Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China

2. Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi, 341000, China

Abstract

The extrusion-formed Zn–0.5Mg alloy got a improved elongation and tensile strength by the addition of Mn. The influence of Mn on the strength contribution was investigated by comparing the microstructures of the designed Zn–0.5Mg and Zn–0.5Mg–0.2Mn alloys. The deformed binary Zn–Mg alloy had a grain size of 9 μm, and the grain size of the deformed ternary Zn–Mg–Mn alloy was 3 m. This result indicated that the extrusion-formed Zn–Mg–Mn alloy had a greater contribution to grain boundary strengthening than the extrusion-formed Zn–Mg alloy. Furthermore, the precipitates in the two alloys show significant differences in size, morphology, density, and variety. Precipitates in the Mn-containing Zn alloy showed a smaller size, higher density, and the ratio of length and diameter. The high elongation rate of the extrusion-formed Zn–Mg–Mn alloy was attributed to the fully fragmented Mg2Zn11 and deformable MnZn13 phases. In addition to enhancing its mechanical characteristics, the Zn–Mg–Mn alloy, as extruded, exhibits the same corrosion rates, antibacterial properties, and biocompatibility. These results are helpful in expanding the applications of Zn alloys in the orthopaedic field.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3