Regulation of Neuronal Pyroptosis Through NLRP3 by Delivering miR-22 Using Lipid Nanoparticles in Mice with Cerebral Ischemia-Reperfusion Injury

Author:

Wang Xiaodong1,Yang Yanli2,Meng Xiaowen1,Ji Fuhai1,Shi Cunxian3

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China

2. Department of Intensive Care Unit, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China

3. Department of Anesthesiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China

Abstract

Liposomes present a promising strategy for microRNA (miRNA) delivery, capitalizing on their unique properties to enable effective therapeutic interventions. In this study, we investigate lipid nanoparticles (LNPs) as carriers to delivery miR-22, aiming to mitigate neuronal pyroptosis by targeting nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3). In vitro, HT-22 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to assess cell viability, lactate dehydrogenase (LDH) levels, and pyroptosis. The pyroptosis-related protein expression was determined by Western blot analysis. The interaction between miR-22 and NLRP3 was assessed by dual luciferase assays. LNPs were employed to deliver miR-22 precursor oligonucleotides (LNP/miR-22) to HT-22 cells. miR-22 overexpression models were constructed to investigate its impact on OGD/R-induced pyroptosis. In vivo, a mouse model of cerebral ischemia-reperfusion was established to investigate the effects of LNP/miR-22 treatment, NLRP3 inhibitor (MCC950), or NLRP3 activator (Nigericin sodium salt). Neural damage and pyroptosis in the hippocampi were evaluated using staining techniques and immunofluorescence. The expression levels of pyroptosis-related proteins in the hippocampi were analyzed by western blotting. Results demonstrated that OGD/R reduced cell viability, increased LDH levels, and induced pyroptosis In vitro. NLRP3 overexpression exacerbated OGD/R-induced pyroptosis. miR-22 was found to target and downregulate NLRP3 expression, leading to reduced pyroptosis. In vivo, miR-22 overexpression suppressed NLRP3 activation, effectively attenuating pyroptosis. In conclusion, LNP-mediated delivery of miR-22 offers a promising strategy to alleviate neuronal pyroptosis by targeting NLRP3, holding potential for the treatment of cerebral ischemia-reperfusion injury.

Publisher

American Scientific Publishers

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3