Mn-Doping in NiO Nanoparticles: Defects-Modifications and Associated Effects Investigated Through Positron Annihilation Spectroscopy

Author:

Das Anjan1,Mandal Atis Chandra2,Roy Soma3,Nambissan P. M. G3

Affiliation:

1. Department of Physics, A.P.C. Roy Government College, Siliguri, Darjeeling 734010, West Bengal, India

2. Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India

3. Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India

Abstract

Manganese-doped nickel oxide (Ni1−xMnxO) nanoparticulate samples with x in the range 0 (undoped sample) to 0.35 were synthesized by sol–gel method involving chemical reactions between the solutions of nickel nitrate hexahydrate and manganese acetate tetrahydrate. The nanocrystallites obtained after annealing of the precipitates for different durations were characterized by X-ray diffraction and high resolution transmission electron microscopy. The samples showed high degree of purity with no secondary phase up to 35 at.% (x = 0.35) of Mn-doping. At the initial doping concentrations, the crystallite sizes increased due to vacancy type defects being recombined with some of the doped Mn2+ ions. However, substitution-induced strain soon overtook the crystallite dynamics and the sizes rapidly started reducing again as an indirect consequence of the necessity to accommodate majority of the doped cations on the surfaces of the nanocrystallites. There was conspicuous changes in the lattice parameter too which could again be attributed to the strain and charge effects. The average sizes of the crystallites were obtained in the range 5.5 nm to 13.1 nm for the different samples. UV-Vis absorption studies indicated the formation of excitonic states in NiO on Mn-doping. The band gap energy (Eg) derived from the optical absorption spectra showed a continuous increase with increase of Mn-doping of the samples. Positron lifetime and Doppler broadening spectroscopic studies were carried out on those samples to characterize the vacancy type defects and defect clusters/complexes. There were also indications to suggest positron annihilation at the crystallite surfaces owing to their sizes of nanometer order. Positron lifetimes decreased upon increase of Mn-doping. The coincidence Doppler broadened ratio curves indicated definite shifts of the prominent oxygen-electron-annihilation peak and the variation of the lineshape parameter S also indicated clearly the effects of Mn-doping.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3