Electromagnetic interference shielding and mechanical properties of multi-layered polyvinyl chloride/multiwall carbon nanotubes nanocomposite

Author:

Aljaafari Abdullah,Ibrahim Sobhy S.

Abstract

Electromagnetic shielding is one of the promising research areas that attract the interest of many researchers, especially researchers interested in polymer nanocomposite. In this work, the shielding efficiency and dynamic mechanical analysis for multi-layered samples are reviewed and analyzed. The multi-layered samples were prepared using two sheets of polyvinyl chloride (PVC) polymer loaded with multiwall carbon nanotubes over the electrical percolation threshold, and a MWCNTs buckypaper (MWCNTs BP) sheet between them. The three sheets were collected together by hot-press technique to form a multi-layered nanocomposite sample. The shielding efficiency of single and double layers of PVC/MWCNTs sheets loaded by 5 wt.% MWCNTs, was very weak. The new structured (3 layered/multilayered) nanocomposite samples were prepared with different weight percent of MWCNTs BP sheet (0, 1, 2, 3 and 4 wt.%). The SE values over all the frequency range (450 MHz to about 2.0 GHz) are strongly depends on the weight percent of the MWCNTs BP. Shielding efficiency increased as the MWCNTs BP weight percent increased. Decreases the elastic modulus, storage modulus and the coefficient of complex viscosity were found for a new set of samples contains 0.14, 0.27, 0.28 and 0.44 wt.% MWCNTs BP layers. This is due to the diffused MWCNTs from the mesh to polymer layers making the composite more brittle. The glass transition temperature determined from tanδ(f) increased as MWCNTs BP content increases.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3