Modelling of Paclitaxel Conjugated with Carbon Nanotubes as an Antitumor Agent for Cancer Therapy

Author:

AL Garalleh Hakim,Algarni Ali

Abstract

Functionalized carbon nanoparticles (CNPs) show great promise for various drug delivery applications. These CNPs have distinct physical and chemical properties, such as low solubility, very high conductivity, and drug loading capability, and are thus important nanodevices for cancer therapy. Cancer is a highly challenging disease, because its therapy involves distinguishing diseased cells from healthy ones. This study aimed to determine the ability of CNPs conjugated with a chemotherapeutic agent to inhibit cancer cell growth. We developed two models to determine the effectiveness of paclitaxel (PTX) as an antitumor agent bonded to single-walled carbon nanotubes (SWCNTs) varying in radius (r). The models were used to mathematically evaluate the energy arising from the PTX–SWCNT interaction. The first model divided the PTX molecule into 15 subcomponents: 4 imidazole rings, 1 group of atoms forming a cylindrical nanotube, 6 methyl groups (small spheres represented as individual CH3 molecules), 3 carboxyl groups (medium-sized spheres represented as individual CO2 molecules), and 1 large sphere. In the second model, PTX was modeled as a spherical cage with a spheroidal structure. Next, we determined the minimum interaction energy between each subcomponent and an SWCNT of radius r, and then summed the interactions to determine the total energy (E). The numerical results indicated that SWCNTs can be loaded with PTX. We also determined the critical nanotube r required for acceptance of the PTX molecule. We believe that the findings of this research will encourage the development of new nanodevices capable of delivering larger amounts of drugs, genes, and proteins.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3