Effect of Harmine and Its Derivatives Against Echinococcus granulosus and Comparison of DNA Damage Targets

Author:

Gong Yuehong,Lv Shunzhong,Tian Chunyan,Gao Yi,Chen Bei,Wen Limei,Gao Huijing,Aimaiti Wusimanjiang,Ma Ruijia,Zhao Jun,Wang Jianhua

Abstract

Cystic echinococcosis (CE) is a worldwide zoonotic disease. At present, the treatment options of CE are limited. The main drugs used in clinical chemotherapy of echinococcosis are albendazole and mebendazole, but they mainly exert longterm antiparasitic effects based on high doses. Therefore, there is an urgent need for effective and safe anti-CE drugs. Previous studies have identified harmine (HM) as a new anti-CE drug. In this study, the efficacy of harmine derivatives was evaluated in vitro and in vivo. The harmine derivatives were tested against E. granulosus protoscoleces (PSC) in vitro. The effect of harmine derivatives was time and concentration dependent at different concentrations, and the anti-CE effect was better than that of harmine. The mortality rate of PSC reached 100% on the 5th day after exposure to harmine derivatives at a concentration of 100 μmol · L –1. Compared with the untreated model control mice, the weight of the cyst was significantly reduced in infected mice treated with harmine derivatives. The effect of harmine derivatives was better than that of harmine, and there was significant difference between harmine derivatives and albendazole (P <0.001). Histopathological examination of experimental mice organs (liver, spleen, lung, brain and small intestine) showed that there was no change in the tissues except for mild inflammation in the liver. The neurotoxicity test in Caenorhabditis elegans showed that the derivative inhibited the movement, feeding, perceptual behavior and acetylcholinesterase activity of C. elegans , and its effect was lower than that of harmine. In addition, intervention with HM derivatives was preliminarily proved to cause DNA damage. This study reveals the potential of HM derivatives as a new class of anti-CE agents and indicates that Topo2a may be a promising target for the development of anti-CE drugs.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3