Green Synthesis of ZnO NPs via Salvia hispanica: Evaluation of Potential Antioxidant, Antibacterial, Mammalian Cell Viability, H1N1 Influenza Virus Inhibition and Photocatalytic Activities

Author:

Rabiee Navid,Bagherzadeh Mojtaba,Ghadiri Amir Mohammad,Kiani Mahsa,Aldhaher Abdullah,Ramakrishna Seeram,Tahriri Mohammadreza,Tayebi Lobat,Webster Thomas J.

Abstract

Among different forms of metallic nanoparticles (NPs), zinc oxide (ZnO) NPs with a very special bandgap of 3.37 eV and considerable binding energy of excitation (60 meV at room temperature), have been classified as high-tech nanoparticles. This study aimed to synthesize ZnO NPs using the extract from Salvia hispanica leaves. The synthesized nanoparticles were fully characterized and the photocatalytic activity was evaluated through the degradation of methylene blue. Additionally, the potential in vitro biological activities of such ZnO NPs in terms of their antibacterial activity were determined, as well as their antioxidant (30 minutes), antiviral (48 hours) and mammalian cell viability properties (48 and 72 hours). This study is the first investigation into the synthesis of such green ZnO NPs mediated by this plant extract, in which both photocatalytic and biomedical properties were found to be promising. The IC50 values for the antibacterial activities were found to be around 17.4 μg mL–1 and 28.5 μg mL–1 for S. aureus and E. coli, respectively, and the antioxidant activity was comparable with the standard BHT. However, the H1N1 inhibition rate using the present green ZnO NPs was lower than oseltamivir (up to about 40% for ZnO NPs and above 90% for oseltamivir) which was expected since it is a drug, but was higher than many synthetic nanoparticles reported in the literature. In addition, the mammalian cell viability assay showed a higher than 80% cellular viability in the presence of 5, 10 and 20 μg mL–1 nanoparticles, and showed a higher than 50% cellular viability in the presence of 50 and 75 μg mL–1 nanoparticles. In this manner, this study showed that these green ZnO NPs should be studied for a wide range of medical applications.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3