Abstract
Large (> 6 mm) artificial blood vessels have been successfully employed in clinic practice. However, small-diameter (< 6 mm) synthetic grafts have not been applied due to their hydrophobicity. In this study, poly-vinylpyrrolidone (PVP) was introduced into poly-L-lactic acid (PLLA)
to prepare biodegradable small-diameter electrospun blood vessels which were further modified via electrostatic self-assembly (ESA). The characteristics of PLLA/PVP films were investigated by scanning electron microscopy (SEM), contact angle measurement and mechanical property testing. The
cytocompatiblility and blood compatibility of the fiber films were further studied through vascular smooth muscle cells (VSMCs) proliferation and platelet adhesion, and the morphology of cells on films was viewed by laser scanning confocal microscopy (LSCM) and SEM. Next, the surface of ESA-modified
electrospun fiber films was analyzed through SEM and photoelectron spectroscopy (XPS). The degradation characteristics of these films were investigated through SEM observation, weight loss, viscosity average molecular weight reduction, and pH change in the testing solutions as well. The films
were also subcutaneously implanted in rabbits to analyze the biocompatibility. The results of these experiments showed that electrospun films with PVP possessed a good structure and improved hydrophilicity. The films assembled with chitosan/heparin by ESA were beneficial to VSMCs survival
and had excellent blood compatibilities. The data indicated these films were biodegradable with good tissue compatibility. In conclusion, we successfully obtained biodegradable small-diameter blood vessels through electrospinning PLLA/PVP and modifying this blend's surface using ESA. The study
provided a feasible method for making small-diameter synthetic blood vessels with improved hydrophilic and anticoagulant properties.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献