Electrostatic Self-Assemble Modified Electrospun Poly-L-Lactic Acid/Poly-Vinylpyrrolidone Composite Polymer and Its Potential Applications in Small-Diameter Artificial Blood Vessels

Author:

Xu Fei,Fan Yubo

Abstract

Large (> 6 mm) artificial blood vessels have been successfully employed in clinic practice. However, small-diameter (< 6 mm) synthetic grafts have not been applied due to their hydrophobicity. In this study, poly-vinylpyrrolidone (PVP) was introduced into poly-L-lactic acid (PLLA) to prepare biodegradable small-diameter electrospun blood vessels which were further modified via electrostatic self-assembly (ESA). The characteristics of PLLA/PVP films were investigated by scanning electron microscopy (SEM), contact angle measurement and mechanical property testing. The cytocompatiblility and blood compatibility of the fiber films were further studied through vascular smooth muscle cells (VSMCs) proliferation and platelet adhesion, and the morphology of cells on films was viewed by laser scanning confocal microscopy (LSCM) and SEM. Next, the surface of ESA-modified electrospun fiber films was analyzed through SEM and photoelectron spectroscopy (XPS). The degradation characteristics of these films were investigated through SEM observation, weight loss, viscosity average molecular weight reduction, and pH change in the testing solutions as well. The films were also subcutaneously implanted in rabbits to analyze the biocompatibility. The results of these experiments showed that electrospun films with PVP possessed a good structure and improved hydrophilicity. The films assembled with chitosan/heparin by ESA were beneficial to VSMCs survival and had excellent blood compatibilities. The data indicated these films were biodegradable with good tissue compatibility. In conclusion, we successfully obtained biodegradable small-diameter blood vessels through electrospinning PLLA/PVP and modifying this blend's surface using ESA. The study provided a feasible method for making small-diameter synthetic blood vessels with improved hydrophilic and anticoagulant properties.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3