Buoyancy-Driven Convection from a Vertical Heated Plate Suspended Inside a Nanofluid-Filled Cooled Enclosure

Author:

Corcione Massimo,Natale Antonio,Quintino Alessandro,Spena Vincenzo Andrea

Abstract

Buoyancy-driven convection from a heated vertical plate suspended inside a nanofluid-filled square enclosure cooled at the walls, is studied numerically using a two-phase model based on the double-diffusive approach. The study is conducted under the assumption that the Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum and energy for the nanofluid, and continuity for the nanoparticles, is solved by a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity and the coefficient of thermophoretic diffusion, all based on a high number of literature experimental data. The SIMPLE-C algorithm is used to handle the pressure-velocity coupling. Numerical simulations are executed using alumina-water nanofluids for different values of the diameter and the average volume fraction of the suspended nanoparticles, the plate length and position, the cavity width, the average temperature of the nanofluid, and the temperature difference imposed between the plate and the boundary walls of the enclosure. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas, by contrast, the other controlling parameters have just moderate effects. Moreover, when the top and bottom walls of the enclosure are cooled, keeping the sidewalls adiabatic, a periodic flow is detected, whose main features will be discussed.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3