Bone Piezoelectricity-Mimicking Nanocomposite Membranes Enhance Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Amplifying Cell Adhesion and Actin Cytoskeleton

Author:

Sun Xiaowen1,Bai Yunyang2,Zheng Xiaona2,Li Xiaochan2,Zhou Yingying3,Wang Yijun3,Heng Boon Chin4,Zhang Xuehui1

Affiliation:

1. Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China

2. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China

3. Department of Medical Technology, Peking University Health Science Center, Beijing, 100081, PR China

4. Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China

Abstract

Ferroelectric biomaterials have been widely investigated and demonstrated to enhance osteogenesis by simulating the inherent electrical properties of bone tissues. Nevertheless, the underlying biological processes are still not wellunderstood. Hence, this study investigated the underlying biological processes by which bone piezoelectricity-mimicking barium titanate/poly(vinylidene fluoride-trifluoroethylene) nanocomposite membranes (BTO nanocomposite membranes) promote osteogenesis of Bone Marrow Mesenchymal Stem Cells (BMSCs). Ourresults revealed that the piezoelectric coefficient (d33) of nanocomposite membranes aftercontrolled corona poling was similar to that of native bone, and exhibited highly-stable piezoelectrical properties and concentrated surface electrical potential. These nanocomposite membranes significantly enhanced the adhesion and spreading of BMSCs, which was manifested as increased number and area of mature focal adhesions. Furthermore, the nanocomposite membranes significantly promoted the expression of integrin receptors genes (α1, α5 andβ3), which in turn enhanced osteogenesis of BMSCs, as manifested by upregulated Alkaline Phosphatase (ALP) and Bone Morphogenetic Protein 2 (BMP2) expression levels. Further investigations found that the Focal Adhesion Kinase (FAK)-Extracellular Signal-Regulated Kinase1/2 (ERK 1/2) signaling axis may be involved in the biological process of polarized nanocomposite membrane-induced osteogenesis. This study thus provides useful insights for betterunderstanding of the biological processes by which piezoelectric or ferroelectric biomaterials promote osteogenesis.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3