Development of Injectable Hydroxyapatite/2-(dimethylamino)Ethyl Methacrylate/Polyvinylpyrrolidone Aqua-Hydrogel System to Repair of the Shoulder Joint Head for Hemiarthroplasty

Author:

Zhang Jiangnan1,Mo Tingting1,Lin Meng1,Chen Zhengbiao1,Lian Chan2,Zhang Guiqin3,Li Jun1

Affiliation:

1. Department of Joint Surgery, Wenling First People’s Hospital, Wenling 317500, China

2. Department of Respiration, Wenling First People’s Hospital, Wenling 317500, China

3. Department of Science and Education, Jinan People’s Hospital, No. 1, Xuehu Street, Laiwu District, Jinan 271100, Shandong Province, China

Abstract

This study aimed to develop osteogenic structure assembly for modular bone treatment presentations, effect of 2-(dimethylamino)ethyl methacrylate and polyvinyl pyrrolidone combination as cell adhesive molecule with hydroxyapatite-based composite as osteoconductive constituent was inspected on bone fracture repair. The prepared injectable composite hydrogel showed significantly improved mechanical stability. The ternary composite gel was characterized for functional group modifications and chemical interactions using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Moreover, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses were performed to observe surface appearances of the hydrogel. The hydroxyapatite/2-(dimethylamino)ethyl methacrylate/poly-N-vinyl-2-pyrrolidone hydrogel played key role in supporting osteoblastic cell spread due to their bioactivity and strength abilities. The present findings revealed the significance of hydroxyapatite concentration on proliferation and osteogenic purpose of the cells. The developed performances of hydrogel have been improved cell proliferation and functions to repair bone fracture.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3