Author:
Nijpanich Supinya,Hagio Takeshi,Kamimoto Yuki,Ichino Ryoichi
Abstract
MFI-type zeolite is a crystalline microporous aluminosilicate with an intersecting two-dimensional pore structure and well-defined windows of approximately 0.55 nm. It generally crystallizes in high silica to alumina ratios, leading to a rather hydrophobic character. This makes it an
attractive adsorbent for removing organic pollutants from wastewater. However, separating the conventional powdery-zeolites from the media after treatment is difficult because they require considerable time to settle. They also trigger filter clogging. In this work, high silica MFI-type zeolite,
namely, silicalite-1, was synthesized on the surfaces of hollow glass microspheres to develop a floating adsorbent with high hydrophobicity. Tetraethylorthosilicate and tetrapropylammonium hydroxide were used as the additional silica source and structure directing agent, respectively. The
crystallization of silicalite-1 on hollow glass microspheres was performed using hydrothermal synthesis at 180 °C or 150 °C for 40 h using a precursor sol with a molar composition of 3SiO2:1TPA:14EtOH:286H2O. The surface coverage and crystallinity of the as-prepared
samples were optimized, and the floatability and adsorption performance of the optimized sample were investigated. Well-covered microspheres were obtained when hydrothermal synthesis was conducted at 180 °C using 0.5 g of hollow glass microspheres and 15 g of a precursor sol adjusted to
pH 12.5. The balance between the dissolution rate of the hollow glass microspheres and the crystallization rate of silicalite-1 appeared to be the key factor in the successful synthesis.
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献