Features of the Crystal Structure and Magnetic Characteristics of the Solid Solutions Ni<sub>1–x</sub>M<sub>x</sub>MnSb (M = Fe, Co) Systems

Author:

Rymski G. S.1,Fedosyuk V. M.1,Rutkauskas A. V.2,Duzeva-Maltseva E. V.3,Tuan A. T.4,Ngoc T. D.5

Affiliation:

1. SSPA “Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus

2. Joint Institute for Nuclear Research

3. National Research Center “Kurchatov Institute”

4. Ho Chi Minh City University of Technology and Education

5. Duy Tan University

Abstract

The results of studying the effect on the crystal structure and magnetic properties of compounds based on NiMnSb when Ni cations are replaced by Fe and Co cations are presented. The solid solution Ni1–xMxMnSb (M = Fe, Co) systems were synthesized by the method of solid-phase reactions. With the help of X-ray diffraction analysis, the presence of a concentration structural transition was established. Using the ponderomotive method, it was found that the temperatures of the “magnetic order – magnetic disorder” phase transformation decrease as nickel is replaced by iron and cobalt. The field dependences of the specific magnetization demonstrate the typical behavior of a magnetically soft ferromagnet. The results of an experiment on the study of the crystal and magnetic structure of solid solutions of the Ni0.90M0.10MnSb (M = Fe, Co) systems using thermal neutron diffraction in the temperature range of ~(3–300) K are presented. It is found that the studied compositions exhibit ferromagnetic ordering along the c axis. On the spectra of Ni0.90Co0.10MnSb solid solutions in the region of 2Θ  = 28.6° the appearance of a reflection indicating the formation of antiferromagnetic ordering is observed. Within the framework of the density functional theory, an ab initio calculation of the magnetic moments for Ni1-xMxMnSb (M = Fe, Co; x = 0; 0.125; 0.250) was carried out. The results of theoretical calculations predict the existence of magnetic moments for Fe and Co ions, and they are antiferromagnetically coupled to the spins of Mn and Ni ions.

Publisher

Belarusian State University of Informatics and Radioelectronics

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3