Deep Neural Network with Adaptive Parametric Rectified Linear Units and its Fast Learning

Author:

Bodyanskiy Yevgeniy,Deineko Anastasiia,Skorik Viktoria,Brodetskyi Filip

Abstract

The adaptive parametric rectified linear unit (AdPReLU) as an activation function of the deep neural network is proposed in the article. The main benefit of the proposed system is adjusted activation function whose parameters are tuning parallel with synaptic weights in online mode. The algorithm of the simultaneous learning of all neurons parameters with AdPReLU and the modified backpropagation procedure based on this algorithm is introduced. The approach under consideration permits to reduce volume of the training data set and increase tuning speed of the DNN with AdPReLU. The proposed approach could be applied in the deep convolutional neural networks (CNN) in conditions of the small value of training data sets and additional requirements for system performance. The main feature of DNN under consideration is possibility to tune not only synaptic weights but the parameters of activation function too. The effectiveness of this approach is proved by experimental modeling.

Publisher

Research Institute for Intelligent Computer Systems

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fast and Effective MIMO Algorithm Using CLR-RNN for Hybrid MDM and WDM Optical Communication System;IEEE Photonics Journal;2024-06

2. Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning;Sensors;2024-03-16

3. Comparative DNN-Based Classification of Customers Feedbacks in E-Commerce Platform;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

4. Unsupervised Pre-Training of Deep Neural Classifiers;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3