A Performant Clustering Approach Based on An Improved Sine Cosine Algorithm

Author:

Khrissi Lahbib,El Akkad Nabil,Satori Hassan,Satori Khalid

Abstract

Image segmentation is a fundamental and important step in many computer vision applications. One of the most widely used image segmentation techniques is clustering. It is a process of segmenting the intensities of a non-homogeneous image into homogeneous regions based on their similarity property. However, clustering methods require a prior initialization of random clustering centers and often converge to the local optimum, thanks to the choices of the initial centers, which is a major drawback. Therefore, to overcome this problem, we used the improved version of the sine-cosine algorithm to optimize the traditional clustering techniques to improve the image segmentation results. The proposed method provides better exploration of the search space compared to the original SCA algorithm which only focuses on the best solution to generate a new solution. The proposed ISCA algorithm is able to speed up the convergence and avoid falling into local optima by introducing two mechanisms that take into account the first is the given random position of the search space and the second is the position of the best solution found so far to balance the exploration and exploitation. The performance of the proposed approach was evaluated by comparing several clustering algorithms based on metaheuristics such as the original SCA, genetic algorithms (GA) and particle swarm optimization (PSO). Our evaluation results were analyzed based on the best fitness values of several metrics used in this paper, which demonstrates the high performance of the proposed approach that gives satisfactory results compared to other comparison methods.

Publisher

Research Institute for Intelligent Computer Systems

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3