1. Dirac, P. A. M. (1950). Can. J. Math. 2, 129. “Lectures on Quantum Mechanics,” Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York, N.Y., 1964).
2. Anderson, J. L., and Bergmann, P. G. (1951). Phys. Rev. 83, 1018. Bergmann, P. G., and Goldberg, J. (1955). Phys. Rev. 98, 531.
3. Lusanna, L. (1990a). Phys. Rep. 185, 1. b) Riv. Nuovo Cimento 14, n. 3, 1 (1991). c) J. Math. Phys. 31, 428 and 2126 (1990d). Int. J. Mod. Phys. A 8, 4193 (1993). e) Comtemp. Math. 132, 531 (1992). f) Chaichian, M., Martinez, D. Louis, and Lusanna, L. Ann. Phys. (N.Y.) 232, 40 (1994).
4. Henneaux, M. (1985). Phys. Rep. 126, 1. Henneaux, M., and Teitelboim, C. “Quantization of Gauge Systems” (Princeton University Press, Princeton, 1992). 144 See Ref. [92] for the application of these methods to find the center of mass of a configuration of the Klein-Gordon field after the preliminary work of Ref. [93]. 145 One can take 1jsys c /(1Ksys /Msys) as gauge internal 3–center of mass.
5. Lusanna, L. “Towards a Unified Description of the Four Interactions in Terms of Dirac-Bergmann Observables,” invited contribution to the book “Quantum Field Theory: A 20th Century Profile,” of the Indian National Science Academy, ed. A. N. Mitra, foreward F. J. Dyson (Hindustan Book Agency, New Delhi, 2000) (HEP-TH /9907081). “Tetrad Gravity and Dirac's Observables,” talk given at the Conf. “Constraint Dynamics and Quantum Gravity 99,” Villasimius 1999 (GR-QC /9912091). “The Rest-Frame Instant Form of Dynamics and Dirac's Observables,” talk given at the Int. Workshop “Physical Variables in Gauge Theories,” Dubna 1999.