1. Roberov, I.G., Figurovsky, D.K., Kiselev, M.A., Grama, V.S., Matveev, D.B. and Ivanov, V.O. (2020). Integrated diagnostics of technical condition and serviceability evaluation of metal materials by nondestructive testing methods. Zagotovitelnyye proizvodstva v mashinostroyenii, vol. 18, no. 4, pp. 178–181. (in Russian)
2. Figurovsky, D.K., Roberov, I.G., Grama, V.S. and Kiselev, M.A. (2018). Otsenka tekhnicheskogo sostoyaniya tonkolistovoy trip-stali posle silovogo vozdeystviya [Assessment of the technical condition of thin-sheet trip-steel after force action]. KIMILA-2018: materialy III Otraslevoy konferentsii po izmeritelnoy tekhnike i metrologii dlya issledovaniy letatelnykh apparatov [Proceedings of the III Industry Conference on Measuring Technology and Metrology for Aircraft Research]. Zhukovsky: TSAGI, pp. 239–245. (in Russian)
3. Kotelkin, A.V., Zvonkov, A.D., Lyuttsau, A.V. and Matveev, D.B. (2009). Ostatochnyye napryazheniya i portativnyye rentgenovskiye difraktometry dlia ikh opredeleniya [Residual stresses and portable X-ray diffractometers for their determination]. V kn.: Progressivnyye tekhnologii OMD [In book: Progressive technologies of OMD]. Moscow: IRIAS, pp. 423–435. (in Russian)
4. James, M.R. (1982). The relaxation of residual stresses during fatigue. Residual Stress and Stress Relaxation: Sagamore Army Materials Research Conference Proceedings, in Kula E., Weiss V. (Eds.). Springer, Boston, MA, vol. 28, pp. 297–314. DOI: 10.1007/978-1-4899-1884-0_16
5. Berkley, S.G. (1996). Method for measuring and extending the service life of fatiguelimited metal components. United States Patent US, no. 5490195A, February 02, 1996.